Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Heliyon ; 10(8): e29675, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38681659

RESUMEN

Combustion of mixed materials during open air burning of refuse or structural fires in the wildland urban interface produces emissions that worsen air quality, contaminate rivers and streams, and cause poor health outcomes including developmental effects. The zebrafish, a freshwater fish, is a useful model for quickly screening the toxicological and developmental effects of agents in such species and elicits biological responses that are often analogous and predictive of responses in mammals. The purpose of this study was to compare the developmental toxicity of smoke derived from the burning of 5 different burn pit-related material types (plywood, cardboard, plastic, a mixture of the three, and the mixture plus diesel fuel as an accelerant) in zebrafish larvae. Larvae were exposed to organic extracts of increasing concentrations of each smoke 6-to-8-hr post fertilization and assessed for morphological and behavioral toxicity at 5 days post fertilization. To examine chemical and biological determinants of toxicity, responses were related to emissions concentrations of polycyclic hydrocarbons (PAH). Emissions from plastic and the mixture containing plastic caused the most pronounced developmental effects, including mortality, impaired swim bladder inflation, pericardial edema, spinal curvature, tail kinks, and/or craniofacial deformities, although all extracts caused concentration-dependent effects. Plywood, by contrast, altered locomotor responsiveness to light changes to the greatest extent. Some morphological and behavioral responses correlated strongly with smoke extract levels of PAHs including 9-fluorenone. Overall, the findings suggest that material type and emissions chemistry impact the severity of zebrafish developmental toxicity responses to burn pit-related smoke.

2.
Part Fibre Toxicol ; 21(1): 14, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459567

RESUMEN

Wildland fires contribute significantly to the ambient air pollution burden worldwide, causing a range of adverse health effects in exposed populations. The toxicity of woodsmoke, a complex mixture of gases, volatile organic compounds, and particulate matter, is commonly studied in vitro using isolated exposures of conventionally cultured lung cells to either resuspended particulate matter or organic solvent extracts of smoke, leading to incomplete toxicity evaluations. This study aimed to improve our understanding of the effects of woodsmoke inhalation by building an advanced in vitro exposure system that emulates human exposure of the airway epithelium. We report the development and characterization of an innovative system that permits live-cell monitoring of the intracellular redox status of differentiated primary human bronchial epithelial cells cultured at an air-liquid interface (pHBEC-ALI) as they are exposed to unfractionated woodsmoke generated in a tube furnace in real time. pHBEC-ALI exposed to freshly generated woodsmoke showed oxidative changes that were dose-dependent and reversible, and not attributable to carbon monoxide exposure. These findings show the utility of this novel system for studying the molecular initiating events underlying woodsmoke-induced toxicity in a physiologically relevant in vitro model, and its potential to provide biological plausibility for risk assessment and public health measures.


Asunto(s)
Contaminación del Aire , Material Particulado , Humanos , Material Particulado/toxicidad , Humo/efectos adversos , Pulmón , Células Epiteliales
3.
Sci Rep ; 13(1): 9018, 2023 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-37270573

RESUMEN

Type III secretion system (T3SS) effector proteins are primarily recognized for binding host proteins to subvert host immune response during infection. Besides their known host target proteins, several T3SS effectors also interact with endogenous bacterial proteins. Here we demonstrate that the Salmonella T3SS effector glycosyltransferase SseK1 glycosylates the bacterial two-component response regulator OmpR on two arginine residues, R15 and R122. Arg-glycosylation of OmpR results in reduced expression of ompF, a major outer membrane porin gene. Glycosylated OmpR has reduced affinity to the ompF promoter region, as compared to the unglycosylated form of OmpR. Additionally, the Salmonella ΔsseK1 mutant strain had higher bile salt resistance and increased capacity to form biofilms, as compared to WT Salmonella, thus linking OmpR glycosylation to several important aspects of bacterial physiology.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa , Ácidos y Sales Biliares , Proteínas de la Membrana Bacteriana Externa/metabolismo , Arginina/metabolismo , Salmonella/genética , Salmonella/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica
4.
Environ Sci Atmos ; 3(1): 11-23, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36692652

RESUMEN

The volatility distribution of organic emissions from biomass burning and other combustion sources can determine their atmospheric evolution due to partitioning/aging. The gap between measurements and models predicting secondary organic aerosol has been partially attributed to the absence of semi- and intermediate volatility organic compounds (S/I-VOC) in models and measurements. However, S/I-VOCs emitted from these sources and typically quantified using the volatility basis framework (VBS) are not well understood. For example, the amount and composition of S/I-VOCs and their variability across different biomass burning sources such as residential woodstoves, open field burns, and laboratory simulated open burning are uncertain. To address this, a novel filter-in-tube sorbent tube sampling method collected S/I-VOC samples from biomass burning experiments for a range of fuels and combustion conditions. Filter-in-tube samples were analyzed using thermal desorption-gas chromatography-mass spectrometry (TD/GC/MS) for compounds across a wide range of volatilities (saturation concentrations; -2 ≤ logC* ≤ 6). The S/I-VOC measurements were used to calculate volatility distributions for each emissions source. The distributions were broadly consistent across the sources with IVOCs accounting for 75% - 90% of the total captured organic matter, while SVOCs and LVOCs were responsible for 6% - 13% and 1% - 12%, respectively. The distributions and predicted partitioning were generally consistent with literature. Particulate matter emission factors spanned two orders of magnitude across the sources. This work highlights the potential of inferring gas-particle partitioning behavior of biomass burning emissions using filter-in-tube sorbent samples analyzed offline. This simplifies both sampling and analysis of S/I-VOCs for studies focused on capturing the full range of organics emitted.

6.
Sci Rep ; 12(1): 5293, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35351940

RESUMEN

The Salmonella enterica SseK1 protein is a type three secretion system effector that glycosylates host proteins during infection on specific arginine residues with N-acetyl glucosamine (GlcNAc). SseK1 also Arg-glycosylates endogenous bacterial proteins and we thus hypothesized that SseK1 activities might be integrated with regulating the intrabacterial abundance of UPD-GlcNAc, the sugar-nucleotide donor used by this effector. After searching for new SseK1 substrates, we found that SseK1 glycosylates arginine residues in the dual repressor-activator protein NagC, leading to increased DNA-binding affinity and enhanced expression of the NagC-regulated genes glmU and glmS. SseK1 also glycosylates arginine residues in GlmR, a protein that enhances GlmS activity. This Arg-glycosylation improves the ability of GlmR to enhance GlmS activity. We also discovered that NagC is a direct activator of glmR expression. Salmonella lacking SseK1 produce significantly reduced amounts of UDP-GlcNAc as compared with Salmonella expressing SseK1. Overall, we conclude that SseK1 up-regulates UDP-GlcNAc synthesis both by enhancing the DNA-binding activity of NagC and by increasing GlmS activity through GlmR glycosylation. Such regulatory activities may have evolved to maintain sufficient levels of UDP-GlcNAc for both bacterial cell wall precursors and for SseK1 to modify other bacterial and host targets in response to environmental changes and during infection.


Asunto(s)
Salmonella enterica , Arginina/metabolismo , Glicosilación , Salmonella enterica/metabolismo , Sistemas de Secreción Tipo III/metabolismo , Uridina Difosfato/metabolismo
7.
Part Fibre Toxicol ; 18(1): 45, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34915899

RESUMEN

BACKGROUND: Open burning of anthropogenic sources can release hazardous emissions and has been associated with increased prevalence of cardiopulmonary health outcomes. Exposure to smoke emitted from burn pits in military bases has been linked with respiratory illness among military and civilian personnel returning from war zones. Although the composition of the materials being burned is well studied, the resulting chemistry and potential toxicity of the emissions are not. METHODS: Smoke emission condensates from either flaming or smoldering combustion of five different types of burn pit-related waste: cardboard; plywood; plastic; mixture; and mixture/diesel, were obtained from a laboratory-scale furnace coupled to a multistage cryotrap system. The primary emissions and smoke condensates were analyzed for a standardized suite of chemical species, and the condensates were studied for pulmonary toxicity in female CD-1 mice and mutagenic activity in Salmonella (Ames) mutagenicity assay using the frameshift strain TA98 and the base-substitution strain TA100 with and without metabolic activation (S9 from rat liver). RESULTS: Most of the particles in the smoke emitted from flaming and smoldering combustion were less than 2.5 µm in diameter. Burning of plastic containing wastes (plastic, mixture, or mixture/diesel) emitted larger amounts of particulate matter (PM) compared to other types of waste. On an equal mass basis, the smoke PM from flaming combustion of plastic containing wastes caused more inflammation and lung injury and was more mutagenic than other samples, and the biological responses were associated with elevated polycyclic aromatic hydrocarbon levels. CONCLUSIONS: This study suggests that adverse health effects of burn pit smoke exposure vary depending on waste type and combustion temperature; however, burning plastic at high temperature was the most significant contributor to the toxicity outcomes. These findings will provide a better understanding of the complex chemical and combustion temperature factors that determine toxicity of burn pit smoke and its potential health risks at military bases.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Animales , Femenino , Incineración , Pulmón , Ratones , Pruebas de Mutagenicidad , Mutágenos , Material Particulado/toxicidad , Ratas
8.
Environ Sci Technol ; 55(22): 15333-15342, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34714622

RESUMEN

In 2018, the International Organization for Standardization (ISO) 19867-1 "Harmonized laboratory test protocols" were released for establishing improved quality and comparability for data on cookstove air pollutant emissions, efficiency, safety, and durability. This is the first study that compares emissions [carbon dioxide, carbon monoxide, total hydrocarbons, methane, nitrogen oxides, fine particulate matter (PM2.5), organic carbon, elemental carbon, and ultrafine particles] and efficiency data between the ISO protocol and the Water Boiling Test (WBT). The study examines six stove/fuel combinations [liquefied petroleum gas (LPG), pellet, wood fan, wood rocket, three stone fire, and charcoal] tested in the same US EPA laboratory. Evaluation of the ISO protocol shows improvements over previous test protocols and that results are relatively consistent with former WBT data in terms of tier ratings for emissions and efficiency, as defined by the ISO 19867-3 "Voluntary Performance Targets." Most stove types remain similarly ranked using ISO and WBT protocols, except charcoal and LPG are in higher PM2.5 tiers with the ISO protocol. Additionally, emissions data including polycyclic aromatic hydrocarbons are utilized to compare between the ISO and Firepower Sweep Test (FST) protocols. Compared to the FST, the ISO protocol results in generally higher PM2.5 tier ratings.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Artículos Domésticos , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Culinaria , Material Particulado/análisis , Estándares de Referencia
9.
J Anim Sci ; 99(4)2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33693672

RESUMEN

Liver abscesses in feedlot cattle are polymicrobial infections. Culture-based studies have identified Fusobacterium necrophorum as the primary causative agent, but a number of other bacterial species are frequently isolated. The incidence of liver abscesses is highly variable and is affected by a number of factors, including cattle type. Holstein steers raised for beef production have a higher incidence than crossbred feedlot cattle. Tylosin is the commonly used antimicrobial feed additive to reduce the incidence of liver abscesses. The objective of this study was to utilize 16S ribosomal RNA amplicon sequence analyses to analyze the bacterial community composition of purulent material of liver abscesses of crossbred cattle (n = 24) and Holstein steers (n = 24), each fed finishing diet with or without tylosin. DNA was extracted and the V3 and V4 regions of the 16S rRNA gene were amplified, sequenced, and analyzed. The minimum, mean, and maximum sequence reads per sample were 996, 177,070, and 877,770, respectively, across all the liver abscess samples. Sequence analyses identified 5 phyla, 14 families, 98 genera, and 102 amplicon sequence variants (ASV) in the 4 treatment groups. The dominant phyla identified were Fusobacteria (52% of total reads) and Proteobacteria (33%). Of the top 25 genera identified, 17 genera were Gram negative and 8 were Gram positive. The top 3 genera, which accounted for 75% of the total reads, in the order of abundance, were Fusobacterium, Pseudomonas, and Bacteroides. The relative abundance, expressed as percent of total reads, of phyla, family, and genera did not differ (P > 0.05) between the 4 treatment groups. Generic richness and evenness, determined by Shannon-Weiner and Simpson's diversity indices, respectively, did not differ between the groups. The UniFrac distance matrices data revealed no clustering of the ASV indicating variance between the samples within each treatment group. Co-occurrence network analysis at the genus level indicated a strong association of Fusobacterium with 15 other genera, and not all of them have been previously isolated from liver abscesses. In conclusion, the culture-independent method identified the bacterial composition of liver abscesses as predominantly Gram negative and Fusobacterium as the dominant genus, followed by Pseudomonas. The bacterial community composition did not differ between crossbred and Holstein steers fed finishing diets with or without tylosin.


Asunto(s)
Enfermedades de los Bovinos , Absceso Hepático , Alimentación Animal/análisis , Animales , Bovinos , Dieta/veterinaria , Absceso Hepático/veterinaria , ARN Ribosómico 16S/genética , Tilosina
10.
Environ Sci Technol ; 55(6): 3786-3795, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33625843

RESUMEN

Trace-level environmental data typically include values near or below detection and quantitation thresholds where health effects may result from low-concentration exposures to one chemical over time or to multiple chemicals. In a cook stove case study, bias in dibenzo[a,h]anthracene concentration means and standard deviations (SDs) was assessed following censoring at thresholds for selected analysis approaches: substituting threshold/2, maximum likelihood estimation, robust regression on order statistics, Kaplan-Meier, and omitting censored observations. Means and SDs for gas chromatography-mass spectrometry-determined concentrations were calculated after censoring at detection and calibration thresholds, 17% and 55% of the data, respectively. Threshold/2 substitution was the least biased. Measurement values were subsequently simulated from two log-normal distributions at two sample sizes. Means and SDs were calculated for 30%, 50%, and 80% censoring levels and compared to known distribution counterparts. Simulation results illustrated (1) threshold/2 substitution to be inferior to modern after-censoring statistical approaches and (2) all after-censoring approaches to be inferior to including all measurement data in analysis. Additionally, differences in stove-specific group means were tested for uncensored samples and after censoring. Group differences of means tests varied depending on censoring and distributional decisions. Investigators should guard against censoring-related bias from (explicit or implicit) distributional and analysis approach decisions.


Asunto(s)
Modelos Estadísticos , Proyectos de Investigación , Sesgo , Simulación por Computador
11.
Chem Res Toxicol ; 33(4): 999-1009, 2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-32191033

RESUMEN

We tested the postulates that (1) a fulvic acid (FA)-like substance is included in cigarette smoke and wood smoke particles (WSP) and (2) cell exposure to this substance results in a disruption of iron homeostasis, associated with a deficiency of the metal and an inflammatory response. The fluorescence excitation-emission matrix spectra of the water-soluble components of cigarette smoke condensate and WSP (Cig-WS and Wood-WS) approximated those for the standard reference materials, Suwanee River and Nordic fulvic acids (SRFA and NFA). Fourier transform infrared spectra for the FA fraction of cigarette smoke and WSP (Cig-FA and Wood-FA), SRFA, and NFA also revealed significant similarities (O-H bond in alcohols, phenols, and carboxylates, C═O in ketones, aldehydes, and carboxylates, and a significant carboxylate content). After exposure to Cig-WS and Wood-WS and the FA standards, iron was imported by respiratory epithelial cells, reflecting a functional iron deficiency. The release of pro-inflammatory mediators interleukin (IL)-8 and IL-6 by respiratory epithelial cells also increased following exposures to Cig-WS, Wood-WS, SRFA, and NFA. Co-exposure of the respiratory epithelial cells with iron decreased supernatant concentrations of the ILs relative to exposures to Cig-WS, Wood-WS, SRFA, and NFA alone. It is concluded that (1) a FA-like substance is included in cigarette smoke and WSP and (2) respiratory epithelial cell exposure to this substance results in a disruption of iron homeostasis associated with both a cell deficiency of the metal and an inflammatory response.


Asunto(s)
Benzopiranos/análisis , Benzopiranos/toxicidad , Fumar Cigarrillos , Inflamación/inducido químicamente , Humo/efectos adversos , Contaminación por Humo de Tabaco/análisis , Madera/química , Células Cultivadas , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Humanos , Inflamación/metabolismo , Interleucina-3/metabolismo , Interleucina-8/metabolismo
12.
Sci Rep ; 10(1): 1073, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31974499

RESUMEN

Many Gram-negative bacterial pathogens interact with mammalian cells by using type III secretion systems (T3SS) to inject virulence proteins into host cells. A subset of these injected protein 'effectors' are enzymes that inhibit the function of host proteins by catalyzing the addition of unusual post-translational modifications. The E. coli and Citrobacter rodentium NleB effectors, as well as the Salmonella enterica SseK effectors are glycosyltransferases that modify host protein substrates with N-acetyl glucosamine (GlcNAc) on arginine residues. This post-translational modification disrupts the normal functioning of host immune response proteins. T3SS effectors are thought to be inactive within the bacterium and fold into their active conformations after they are injected, due to the activity of chaperones that keep the effectors in a structural state permissive for secretion. While performing mass spectrometry experiments to identify glycosylation substrates of NleB orthologs, we unexpectedly observed that the bacterial glutathione synthetase (GshB) is glycosylated by NleB on arginine residue R256. NleB-mediated glycosylation of GshB resulted in enhanced GshB activity, leading to an increase in glutathione production, and promoted C. rodentium survival in oxidative stress conditions. These data represent, to our knowledge, the first intra-bacterial activity for a T3SS effector and show that arginine-GlcNAcylation, once thought to be restricted to host cell compartments, also plays an important role in regulating bacterial physiology.


Asunto(s)
Proteínas Bacterianas/metabolismo , Citrobacter rodentium/metabolismo , Salmonella enterica/metabolismo , Sistemas de Secreción Tipo III/metabolismo , Proteínas Bacterianas/genética , Citrobacter rodentium/genética , Glicosilación , Salmonella enterica/genética , Sistemas de Secreción Tipo III/genética
13.
Atmos Chem Phys ; 20(22): 14077-14090, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33552150

RESUMEN

N-containing aromatic compounds (NACs) are an important group of light-absorbing molecules in the atmosphere. They are often observed in combustion emissions, but their chemical formulas and structural characteristics remain uncertain. In this study, red oak wood and charcoal fuels were burned in cookstoves using the standard water boiling test (WBT) procedure. Submicron aerosol particles in the cookstove emissions were collected using quartz (Q f ) and polytetrafluoroethylene (PTFE) filter membranes positioned in parallel. A back-up quartz filter (Q b ) was also installed downstream of the PTFE filter to evaluate the effect of sampling artifact on NACs measurements. Liquid chromatography-mass spectroscopy (LC-MS) techniques identified seventeen NAC chemical formulas in the cookstove emissions. The average concentrations of total NACs in Q b samples (0.37 ± 0.31 - 1.79 ± 0.77 µg m-3) were greater than 50% of those observed in the Q f samples (0.51 ± 0.43 - 3.91 ± 2.06 µg m-3), and the Q b to Q f mass ratios of individual NACs had a range of 0.02 - 2.71, indicating that the identified NACs might have substantial fractions remaining in the gas-phase. In comparison to other sources, cookstove emissions from red oak or charcoal fuels did not exhibit unique NAC structural features, but had distinct NACs composition. However, before identifying NACs sources by combining their structural and compositional information, the gas-particle partitioning behaviors of NACs should be further investigated. The average contributions of total NACs to the light absorption of organic matter at λ = 365 nm (1.10 - 2.57%) in Q f and Q b samples (10.7 - 21.0%) are up to 10 times larger than their mass contributions (Q f 0.31 - 1.01%, Q b 1.08 - 3.31%), so the identified NACs are mostly strong light absorbers. To explain more sample extracts absorption, future research is needed to understand the chemical and optical properties of high molecular weight (e.g., MW > 500 Da) entities in particulate matter.

14.
Atmos Chem Phys ; 19(5): 2899-2915, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31501655

RESUMEN

This study seeks to understand the compositional details of N-containing aromatic compounds (NACs) emitted during biomass burning (BB) and their contribution to light-absorbing organic carbon (OC), also termed brown carbon (BrC). Three laboratory BB experiments were conducted with two U.S. pine forest understory fuels typical of those consumed during prescribed fires. During the experiments, submicron aerosol particles were collected on filter media and subsequently extracted with methanol and examined for their optical and chemical properties. Significant correlations (p < 0.05) were observed between BrC absorption and elemental carbon (EC)/OC ratios for individual burns data. However, the pooled experimental data indicated that the BB BrC absorption depends on more than the BB fire conditions as represented by the EC/OC ratio. Fourteen NAC formulas were identified in the BB samples, most of which were also observed in simulated secondary organic aerosol (SOA) from photo-oxidation of aromatic VOCs with NOX. However, the molecular structures associated with the identical NAC formula from BB and SOA are different. In this work, the identified NACs from BB are featured by methoxy and cyanate groups, and are predominately generated during the flaming phase. The mass concentrations of identified NACs were quantified using authentic and surrogate standards, and their contributions to bulk light absorption of solvent extractable OC were also calculated. The contributions of identified NACs to organic matter (OM) and BrC absorption were significantly higher in flaming-phase samples than those in smoldering-phase samples, and correlated with EC/OC ratio (p < 0.05) for both individual burns and pooled experimental data, indicating that the formation of NACs from BB largely depends on burn conditions. The average contributions of identified NACs to overall BrC absorption at 365 nm ranged from 0.087 ± 0.024 to 1.22 ± 0.54%, 3 - 10 times higher than their mass contributions to OM (0.023 ± 0.0089 to 0.18 ± 0.067%), so the NACs with light absorption identified in this work from BB are likely strong BrC chromophores. Further studies are warranted to identify more light-absorbing compounds to explain the unknown fraction (> 98%) of BB BrC absorption.

15.
Arch Toxicol ; 93(6): 1501-1513, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31006059

RESUMEN

The characteristics of wildland fire smoke exposures which initiate or exacerbate cardiopulmonary conditions are unclear. We previously reported that, on a mass basis, lung toxicity associated with particulate matter (PM) from flaming smoke aspirated into mouse lungs is greater than smoldering PM. In this study, we developed a computer-controlled inhalation system which can precisely control complex biomass smoke emissions from different combustion conditions. This system was used to examine the toxicity of inhaled biomass smoke from peat, eucalyptus, and oak fuels generated under smoldering and flaming phases with emissions set to the same approximate concentration of carbon monoxide (CO) for each exposure (60-110 ppm), resulting in PM levels of ~ 4 mg/m3 for flaming and ~ 40 mg/m3 for smoldering conditions. Mice were exposed by inhalation 1 h/day for 2 days, and assessed for lung toxicity at 4 and 24 h after the final exposure. Peat (flaming and smoldering) and eucalyptus (smoldering) smoke elicited significant inflammation (neutrophil influx) in mouse lungs at 4 h with the peat (flaming) smoke causing even greater lung inflammation at 24-h post-exposure. A significant alteration in ventilatory timing was also observed in mice exposed to the peat (flaming) and eucalyptus (flaming and smoldering) smoke immediately after each day of exposure. No responses were seen for exposures to similar concentrations of flaming or smoldering oak smoke. The lung toxicity potencies (neutrophil influx per PM mass) agreed well between the inhalation and previously reported aspiration studies, demonstrating that although flaming smoke contains much less PM mass than smoldering smoke, it is more toxic on a mass basis than smoldering smoke exposure, and that fuel type is also a controlling factor.


Asunto(s)
Biomasa , Exposición por Inhalación/efectos adversos , Humo/efectos adversos , Contaminantes Atmosféricos/toxicidad , Animales , Monóxido de Carbono/análisis , Eucalyptus , Femenino , Enfermedades Pulmonares/inducido químicamente , Enfermedades Pulmonares/patología , Ratones , Ratones Endogámicos BALB C , Infiltración Neutrófila/efectos de los fármacos , Material Particulado/toxicidad , Quercus , Pruebas de Función Respiratoria , Suelo , Madera
16.
Sci Rep ; 9(1): 145, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30644404

RESUMEN

Heart rate assays in wild-type zebrafish embryos have been limited to analysis of one embryo per video/imaging field. Here we present for the first time a platform for high-throughput derivation of heart rate from multiple zebrafish (Danio rerio) embryos per imaging field, which is capable of quickly processing thousands of videos and ideal for multi-well platforms with multiple fish/well. This approach relies on use of 2-day post fertilization wild-type embryos, and uses only bright-field imaging, circumventing requirement for anesthesia or restraint, costly software/hardware, or fluorescently-labeled animals. Our original scripts (1) locate the heart and record pixel intensity fluctuations generated by each cardiac cycle using a robust image processing routine, and (2) process intensity data to derive heart rate. To demonstrate assay utility, we exposed embryos to the drugs epinephrine and clonidine, which increased or decreased heart rate, respectively. Exposure to organic extracts of air pollution-derived particulate matter, including diesel or biodiesel exhausts, or wood smoke, all complex environmental mixtures, decreased heart rate to varying degrees. Comparison against an established lower-throughput method indicated robust assay fidelity. As all code and executable files are publicly available, this approach may expedite cardiotoxicity screening of compounds as diverse as small molecule drugs and complex chemical mixtures.


Asunto(s)
Frecuencia Cardíaca/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento/métodos , Animales , Cardiotoxicidad , Evaluación Preclínica de Medicamentos/métodos , Embrión no Mamífero , Procesamiento de Imagen Asistido por Computador , Material Particulado/toxicidad , Pez Cebra/embriología
17.
Environ Pollut ; 244: 38-46, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30321710

RESUMEN

Light-absorbing organic carbon (OC), also referred to as "brown carbon" (BrC), has been intensively investigated in atmospheres impacted by biomass burning. However, other BrC sources (e.g., secondary formation in the atmosphere) are rarely studied in ambient aerosols. In the current work, forty-five PM2.5 filter samples were collected in Research Triangle Park (RTP), NC, USA from June 1st to July 15th, 2013. The bulk carbonaceous components, including OC, elemental carbon (EC), water soluble OC (WSOC), and an array of organic molecular markers were measured; an ultraviolet/visible spectrometer was used to measure the light absorption of methanol extractable OC and WSOC. The average light absorption per OC and WSOC mass of PM2.5 samples in summer RTP are 0.36 ±â€¯0.16 m2 gC-1 and 0.29 ±â€¯0.13 m2 gC-1, respectively, lower than the ambient aerosol samples impacted by biomass burning and/or fossil fuel combustion (0.7-1.6 m2 gC-1) from other places. Less than 1% of the aqueous extracts absorption is attributed to the light-absorbing chromophores (nitroaromatic compounds) identified in this work. To identify the major sources of BrC absorption in RTP in the summer, Positive Matrix Factorization (PMF) was applied to a dataset containing optical properties and chemical compositions of carbonaceous components in PM2.5. The results suggest that the formation of biogenic secondary organic aerosol (SOA) containing organosulfates is an important BrC source, contributing up to half of the BrC absorption in RTP during the summertime.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Carbono/análisis , Luz , Compuestos Orgánicos/análisis , Material Particulado/análisis , Estaciones del Año , Aerosoles/análisis , Atmósfera , Biomasa , Monitoreo del Ambiente/métodos , Incendios , Combustibles Fósiles , Metanol , North Carolina , Tamaño de la Partícula , Sudeste de Estados Unidos , Ésteres del Ácido Sulfúrico/análisis , Agua/química
18.
Atmosphere (Basel) ; 10(9): 536, 2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-33628468

RESUMEN

Biomass pellets are a source of renewable energy; although, the air pollution and exposure risks posed by the emissions from burning pellets in biomass boilers (BBs) are uncertain. The present study examines the organic species in fine particle matter (PM) emissions from an BB firing switchgrass (SwG) and hardwood (HW) biomass pellets using different test cycles. The organic and elemental carbon (OC and EC) content and select semivolatile organic compounds (SVOCs) in filter-collected PM were identified and quantified using thermal-optical analysis and gas chromatography-mass spectrometry (GC-MS), respectively. Fine PM emissions from the BB ranged from 0.4 g/kg to 2.91 g/kg of pellets burned of which 40% ± 17% w/w was carbon. The sum of GC-MS quantified SVOCs in the PM emissions varied from 0.13 to 0.41 g/g OC. Relatively high levels of oxygenated compounds were observed in the PM emissions, and the most predominant individual SVOC constituent was levoglucosan (12.5-320 mg/g OC). The effect of boiler test cycle on emissions was generally greater than the effect due to pellet fuel type. Organic matter emissions increased at lower loads, owing to less than optimal combustion performance. Compared with other types of residential wood combustion studies, pellet burning in the current BB lowered PM emissions by nearly an order of magnitude. PM emitted from burning pellets in boilers tested across multiple studies also contains comparatively less carbon; however, the toxic polycyclic aromatic hydrocarbons (PAH) in the PM tested across these pellet-burning studies varied substantially, and produced 2-10 times more benzo[k]fluoranthene, dibenz[a,h]anthracene and indeno[1,2,3-c,d]pyrene on average. These results suggest that further toxicological evaluation of biomass pellet burning emissions is required to properly understand the risks posed.

19.
Atmos Environ (1994) ; 207: 93-104, 2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32461734

RESUMEN

The United States (US) Environmental Protection Agency (EPA)'s SPECIATE database contains speciated particulate matter (PM) and volatile organic compound (VOC) emissions profiles. Emissions profiles from anthropogenic combustion, industry, wildfires, and agricultural sources among others are key inputs for creating chemically-resolved emissions inventories for air quality modeling. While the database and its use for air quality modeling are routinely updated and evaluated, this work sets out to systematically prioritize future improvements and communicate speciation data needs to the research community. We first identify the most prominent profiles (PM and VOC) used in the EPA's 2014 emissions modeling platform based on PM mass and VOC mass and reactivity. It is important to note that the on-road profiles were excluded from this analysis since speciation for these profiles is computed internally in the MOVES model. We then investigate these profiles further for quality and to determine whether they were being appropriately matched to source types while also considering regional variability of speciated pollutants. We then applied a quantitative needs assessment ranking system which rates the profile based on age, appropriateness (i.e. is the profile being used appropriately), prevalence in the EPA modeling platform and the quality of the reference. Our analysis shows that the highest ranked profiles (e.g. profile assignments with the highest priority for updates) include PM2.5 profiles for fires (prescribed, agricultural and wild) and VOC profiles for crude oil storage tanks and residential wood combustion of pine wood. Top ranked profiles may indicate either that there are problems with the currently available source testing or that current mappings of profiles to source categories within EPA's modeling platform need improvement. Through this process, we have identified 29 emissions sourcecategories that would benefit from updated mapping. Many of these mapping mismatches are due to lack of emissions testing for appropriate source categories. In addition, we conclude that new source emissions testing would be especially beneficial for residential wood combustion, nonroad gasoline exhaust and nonroad diesel equipment.

20.
Nat Commun ; 9(1): 4283, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30327479

RESUMEN

The bacterial effector proteins SseK and NleB glycosylate host proteins on arginine residues, leading to reduced NF-κB-dependent responses to infection. Salmonella SseK1 and SseK2 are E. coli NleB1 orthologs that behave as NleB1-like GTs, although they differ in protein substrate specificity. Here we report that these enzymes are retaining glycosyltransferases composed of a helix-loop-helix (HLH) domain, a lid domain, and a catalytic domain. A conserved HEN motif (His-Glu-Asn) in the active site is important for enzyme catalysis and bacterial virulence. We observe differences between SseK1 and SseK2 in interactions with substrates and identify substrate residues that are critical for enzyme recognition. Long Molecular Dynamics simulations suggest that the HLH domain determines substrate specificity and the lid-domain regulates the opening of the active site. Overall, our data suggest a front-face SNi mechanism, explain differences in activities among these effectors, and have implications for future drug development against enteric pathogens.


Asunto(s)
Arginina/metabolismo , Proteínas Bacterianas/química , Interacciones Huésped-Patógeno/fisiología , Acetilglucosamina/metabolismo , Animales , Arginina/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Proteínas de Escherichia coli/química , Femenino , Glicosilación , Células HEK293 , Humanos , Ratones Endogámicos BALB C , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Salmonella typhimurium/patogenicidad , Especificidad por Sustrato , Factores de Virulencia/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...